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Natural and laboratory (artificial) oxidation 
I. Origin of term
First studies of coal oxidation were carried out in the second half of the 18th century followed by intensive coal research in the twentieth century (Parr and Francis, 1908; Parr, 1925; Parr and Milner, 1925; Parr and Coons 1925; van Krevelen, 1982). 
The process of aerial coal oxidation is introduced here to denote in situ complex reactions of coal with oxygen at ambient and at low temperatures (< 250°C), (Cox and Nelson, 1984) occurring at diverse conditions and time intervals and resulting in changes of coal’s optical, physical, chemical and technological properties as well as of its molecular structure, (Tab.1). 
The process of aerial coal oxidation takes place in situ during weathering at ambient and at low temperature conditions and during laboratory experiments in which coals are artificially oxidized during drying at ambient conditions and at low temperatures up to approximately 250°C. The upper temperature limit of 250°C is marking beginning stage of coal pyrolysis. 
Tab. 1. Conditions of natural and artificial (laboratory) oxidations. 
	Natural (weathering) oxidation
	Artificial (laboratory) oxidation

	at ambient conditions at
about < 35-50°C
	At low temperature conditions at about  35°C -250°C
	Drying 
at about 25-30°C
	At low temperature oxidation conditions
 at about 25°C -250°C



In situ natural as well as artificial (laboratory) oxidation of coals can be defined as a series of physical, chemical or biological weathering processes (Marchioni, 1983). The process of weathering can take place in situ at outcrop, coal face (coal wall), waste piles, stockpiles, or during coal processing or transport and the resulting coal oxidation can cause alteration of coal properties (Chandra, 1962; Ingram and Rimstidt, 1984; Taylor et al., 1998). The process of artificial oxidation of coals takes place in laboratory experiments at various conditions. 
Related terms:
Low temperature oxidation: Schmidt (1945), Berkowitz (1985), Larsen et al. (1986), Nelson (1989), van Krevelen (1993), Carras and Young (1994) 
Natural oxidation: Bustin et al. (1985)
Mild oxidation: Sánchez and Rincón (1997)
Artificial weathering: Wachowska et al. (1974)
Air oxidation: Mastalerz et al. (2009)
Low temperature coal weathering: Wu et al. (1988)
Incipient coal oxidation: Kruszewska and du Cann, (1996)
IIa. Definition, origin of in situ weathering 
In situ weathering of coal including oxidation at ambient and at low temperature conditions starts upon the exposure of coal to oxygen with oxygen acting as an oxidizing agent and continues to exert its influence prior to and/or during mining, coal extraction, washing, storage at stockpiles or waste damps, transport (Chandra 1962; Bustin et al., 1983; Ingram and Rimstidt, 1984; Klein and Welleck, 1989; Nelson, 1989). 
The factors governing weathering of coal are divided into internal such as coal rank, composition, moisture content and external such as temperature, oxygen partial pressure, rate of coal oxidation, particle size, oxidation history/extent of previous oxidation, climate, ground water conditions, extent of fracturing of coal and adjacent rock, tectonic faults, and depth.
Coal rank
In general, the lower the rank of coal, the higher is its susceptibility to interact with oxygen (Stopes and Wheeler, 1923a, 1924; Wheeler and Woolhouse, 1932; Schmidt, 1945). Similar conclusion reached Fieldner et al. (1945) whereby oxygen absorption of coal generally decreases with increasing rank that is, being the lowest for anthracite and highest for subbituminous coal and lignite. La Grange (1950, 1951), Bustin et al. (1985), and Wu et al. (1988) confirmed that coal rank is generally regarded as a reliable indicator of coal’s relative propensity towards coal weathering. The lower the coal rank the more liable coal appears to be towards weathering. Moore (1931, 1932) studied rates of coal oxidation and suggested an approximate correlation of coal rank with oxidation rate.
Coal composition
Stopes and Wheeler (1923a,b,c) concluded that the four studied banded constituents of coal (vitrain, clarain, durain, and fusain) exhibited no significant difference in oxidation rates. Tideswell and Wheeler (1920) reached the same conclusion. According to Chandra (1962, 1982) and Leythaeuser (1973), varying oxidation temperatures as well as oxidizing conditions can exert an influence on petrographic features of weathered coals. In a given sample all macerals are prone to coal oxidation, although liptinite and vitrinite macerals display the greater proneness to in situ coal oxidation. On the contrary, fusinite macerals and especially pyrofusinite due to its molecular structure are extremely resistant to oxidative changes. 
Moisture content
The oxidation rate is generally influenced by presence and removal of moisture content from coal of different rank and by presence of the relative air humidity.  It has been found that coal reacts with oxygen more rapidly when wet than when dry under laboratory conditions (Graham 1914, 1915; Haldane and Makgill, 1934; Jones and Townend, 1949; Mukherjee and Lahiri, 1957; Lowry, 1963; Itay et al., 1989; Smith and Lazzara, 1987; Beier, 1962). Similarly, Cronauer et al. (1983b) suggested that rate of oxidation of subbituminous coal is influenced by the remaining moisture content of the coal. Further, there appears to be critical moisture content at which coals exhibit accelerated oxidation rate. Panaseiko (1974) found that there was a critical moisture level at which the adsorption of oxygen by surface of coal was the highest and the oxidation proceeded rapidly. This critical moisture level was found to decrease with increasing rank and was suggested to be 5-8 wt % for brown coal, 1.5-2.0 wt % for subbituminous coals and 0.5-0.7 wt % for low-volatile bituminous coals and anthracites. Chen and Stott (1993) observed that the maximum oxidation rate of sub-bituminous coals occurred at a “critical” moisture content of 7-17 % db (dry basis). Regarding removal of moisture, Walker (1967) and Banerjee et al. (1970) showed that stripping moisture from coal would expose more fresh active sites for oxygen contact and would therefore accelerate oxidation. In contrary, Huggins et al. (1983) reported that the depletion of moisture at low temperatures by storing of coal over a desiccant retarded the rate of oxidation. With respect to relative air humidity, Beier (1962) concluded based upon his comprehensive studies that in dry or very moist air conditions the oxidation rate was higher than at medium humidity levels. Berkowitz (1985) suggested that this can be linked to the change in the mechanism of coal oxidation at about 70°C.  Below 70°C, acid functions and peroxides are forming during coal oxidations. Above 70°C peroxides forms only transiently or not at all. It is possible, that humidity promotes coal oxidation at lower temperatures and inhibits it at higher temperatures. The different oxidation conditions influence the development of different coal oxidation reactions and products Huggins et al. (1983) and Gethner (1986, 1987b) found that coal oxidation reactions and products were significantly different under moist conditions compared to conditions without moisture. Further, Huggins and Huffman (1989) suggested that hydrolysis reactions in which water is available to form hydrolyzed species such as hydroperoxides and hydrated ferrous sulfates are likely to be important in the weathering process.  
Temperature 
Temperature is one of the major factors exhibiting an influence on the rate of oxidation as concluded by Wu et al. (1988), Carras and Young (1994) and Wang et al. (2003). In the studies, rate of oxidation increases exponentially with temperature. Similar conclusion reached Zelkowski (2004) who reported that the higher the temperature during coal oxidation the more insensitive development of coal oxidation is to be expected. The velocity of coal oxidation is exponentially dependent on temperature. The temperature dependency of oxidation reactions was further confirmed by Gethner (1987a, b), where each oxidation reaction displayed a different temperature dependency at a temperature range from 25 to 100°C
Other factors
Coal weathering appears to be promoted by tectonic shearing, fracturing leading to generation of fines and rubble resulting from brittle behavior of coal.  In sheared coals or coals acting as aquifers, coal oxidation is observed at depths up to 100 meters and is expected to decrease with depth (Bustin et al., 1985). Also the extent of fracturing of coal and adjacent rock has a notable effect on degree of oxidation with fractures promoting oxidation. While Nötzold (1940b) observed coal weathering occurred in situ at a planar fracture surface of fault surface of coal face, he could not detect weathering further along the same fault plane. According to Bustin et al. (1985) coal weathering was observed up to 10 m below the surface in an audit (No. 6 coal seam) from Tent Mountain in the SE Canadian Cordillera. This was further confirmed by Mathews and Bustin (1984) who reported weathered vitrinite occurring in the near-surface coals. Also Fredericks at el. (1983) and Nelson (1989) conclude that coal weathering occurs in the first few to several meters below the outcrop surface. 
IIb. Definition, origin of laboratory (artificial) oxidation
Laboratory (artificial) oxidation includes laboratory drying and low temperature oxidation (Pisupati et al., 1993; Mastalerz et al., 2009) and begins upon the exposure of coal to oxygen with oxygen acting as an oxidizing agent during laboratory experiments at diverse conditions (Chandra, 1962; Bustin et al., 1983; Klein and Welleck, 1989; Nelson, 1989; Ingram and Rimstidt, 1984). The exposure conditions range from ambient conditions up to approximately 250°C covering a different range of heating rates. Laboratory artificial oxidation is applied to dry, fresh wet coals and carried out in laboratory ovens with forced air convection or non-specified air circulation in wet or dry conditions. 
 III. Reaction mechanisms
The reaction mechanism of in situ weathering was studied in a number of laboratory coal oxidation studies (Wachowska et al., 1974; Painter et al., 1980; Cronauer et al., 1983a,b; Liotta et al., 1983; Larsen, 1986; Gethner, 1987a,b; Khan et al., 1988; Clemens et al., 1991; Butakova et al., 2013). Laboratory oxidation of bituminous coals up to around 150°C is a complex process involving the following phenomena (Kochi, 1973; Cronauer et al., 1983a,b; Liotta et al., 1983; Calemma et al., 1988; Khan et al., 1988; Clemens et al., 1991; Azik et al., 1993; Lopez et al., 1998; Wang et al., 2003; Zhang et al., 2013):
· Oxygen transport to the coal surface and within coal pores 
· Chemical interaction between coal (certain aliphatic species, generally methylene groups α to aromatic rings or to –OR groups; R denotes an attached hydrogen, or a hydrocarbon side chain of any length, but may sometimes refer to any group of atoms) and molecular oxygen producing peroxides and hydroperoxides 
· Subsequent thermal decomposition of activated oxygenated complexes
· Release of heat
IV. Oxidation effects in naturally oxidised coals 
Macerals
Jüttner (1956) found that coal lithotypes follow their proneness of oxidation in the following order: vitrain, clarain, durain, and fusain. Ferrari (1938), Kukharenko and Ryzhova (1956), Bustin (1982), Bustin et al. (1985), Wagner (2007) supported this finding and concluded that under natural conditions vitrain and or vitrinite were more easily oxidized than fusain displaying most of the weathering characteristics. Similarly, Yohe (1958) reported that fusain was the most resistant to weathering. 
Colour
Mathews and Bustin (1984) observed a darkish cast of naturally oxidized vitrinite with oxidation progressed throughout the grains. Marchioni (1983) examined weathered inertinite and observed their lighter colour as a result of coal weathering. 
Oxidation rims, oxyrims, reaction rims
The presence or absence of oxidation rims has been reported in weathered bituminous coals, occurring generally in vitrinite macerals. In addition, oxidation rims were also observed in resinite and in inertinite and semi-inertinite macerals. 
Chandra (1962) did not report any oxidation rims in the studied weathered coal samples. The author suggests that when the temperature of oxidation is low, oxidation rims do not appear in the studied coal samples. Similarly, Marchioni (1983) observed no oxidation rims in weathered subbituminous coals. This is in agreement with Alpern and Maume (1969) who suggested that low rank coals were unlikely to form oxidation rims. 
The presence of oxidation rims at grain boundaries of vitrinite macerals as a result of in situ weathering is petrographically well documented (Ferrari, 1938; Teichmüller and Teichmülle,r 1950; Nakayanagi, 1956; Chandra, 1962; Stach et al., 1975; Gray et al., 1976; Crelling et al., 1979; Lowenhaupt and Gray, 1980; Bustin, 1982; Gray, 1982; Marchioni, 1983; Ingram and Rimstidt, 1984; Mathews and Bustin, 1984; Kruszewska et al., 1992; Bend and Kossloski, 1993; Pisupati and Scaroni, 1993; Lo and Cardott, 1995; Kruszewska and du Cann, 1996; Korte, 2001; Valentim et al., 2006; Wagner, 2007). Oxidation rims have been observed at fissured and non-fissured grain boundaries and along fractures and fissures. Numerous authors observed oxidation rims occurring at the periphery of vitrinite particles and throughout the grains. In the more weathered coals, oxidation zones have progressed throughout the coal grains. 
Van Krevelen and Schuyer (1957) stated that the width of oxidation rims formed in a given length of time and at a given temperature is a simple measure of reactivity of coals. Sommers and Peters (1954), Edwards et al. (1964), Dawson (1967), Alpern and Maume (1969) and Prado (1972) agree that penetration of oxygen into the coal particles is a process that depends on the exposed surface area,  and that the width of the oxidation rims depends on coal rank, and temperature and time of weathering. Also van Krevelen and Schuyer (1957) stated that the width of oxidation rims in a given length of time and at a given temperature might give a simple measure of reactivity of coal. 
Oxidation rims have been noted in samples where the temperature of oxidation was low (e.g., during coal fires at 150°C; Nötzold, 1940a). The oxidation rims of in situ weathered coals at the oxidation temperature of < 150°C are often described as dark in colour. The development of darker oxidation rims has been associated with formation of humic acids due to weathering (Teichmüller and Teichmüller, 1950; Nakayanagi, 1956; Gray et al., 1976; Crelling et al., 1979; Marchioni, 1983; Wagner, 2007) or due to low temperature oxidation in a wet atmosphere, (Chandra, 1982). Alpern and Maume (1969), Gray and Krupinski (1976), Crelling et al. (1979), Bustin (1982), Bustin et al. (1983, 1985), and others attribute the origin of the observed darker rims of lower reflectance in weathered coals to air oxidation under subaerial or subaqueous conditions at ambient temperatures or to circulation of oxygenated waters. Dark oxidation rims are believed to represent removal of material without chemical restructuring. 
Ferrari (1938), Nötzold (1940a,b), Szadeczky-Kardoss (1944), Wagner (2007), Kus et al. (2010), Misz et al. (2007), Misz-Kennan and Fabiańska (2010) suggest that the development of bright oxidation rims is a result of high temperature oxidative alteration, often observed in situ at surface of coal face, tectonic fractures,  stock piles, and waste piles  subjected to self-heating and subsequent coal fires processes. 
Mathews and Bustin (1984) observed oxidized inertinite and semi-inertinite in the near-surface coals characterized by distinct oxidation rims.
Relief and grain outline 
A relatively higher polishing relief of coal particles is a result of in situ coal weathering as reported by Teichmüller and Teichmüller (1950) and Chandra (1962). Also Marchioni (1983) suggested an overall marked relief in weathered coals. Similarly, Nötzold (1940a,b), Bustin (1982) and Mathews and Bustin (1984) observed high relief in weathered vitrinite. In addition, Kruszewska et al. (1992) reported edges of weathered vitrinite particles to be rounded. 
Micropores
In situ weathering results in formation of micropores of few µm in diameter observed under optical microscope (Chandra, 1962; Leythaeuser, 1973). Bustin (1982) and Mathews and Bustin (1984) observed micropores forming at an advanced stage of coal oxidation.   
Microcracks, microfissures  
With the progress of oxidation processes, i.e., at an advanced stage of coal oxidation, vitrinite among other maceral types display most extensive development of microcracks and microfissures (Teichmüller and Teichmüller, 1948, 1950; Nakayanagi, 1956; Noel, 1958; Podgajni, 1961; Chandra, 1962; Jacob, 1964; Bustin, 1982; Mathews and Bustin, 1984; Wagner, 2007; Mangena and du Cann, 2007). The size of microfissures is defined by Wagner (2007) to have a width < 1 μm and that of microcracks of > 1 μm width. Apart from macerals types, oxidation related microfissures and microcracks are also reported to occur in microlithotypes (Wagner 2007).  These microcracks and microfissures are usually not related to cleat direction or pseudovitrinite (Kruszewska et al., 1992; Wagner, 2007).  In weathered coal samples, formation of microfissures is predominantly observed at grain margins of vitrinite giving rise to the so called corroded margins.  At stages of intensive coal oxidation, occurrence of microfissures is also reported to occur throughout the vitrinite grain. The form of developed microcracks and microfissures differs widely in weathered coals. Alpern and Maume (1969) and Lowenhaupt and Gray (1980) suggest that microfissured occurring in weathered coals are usually conchoidal or bifurcating. Nelson (1989) and Korte (2001) observed characteristic irregular microfissures in weathered vitrinite. Ghosh (1997) on the other hand observed irregular or radial fracture pattern in vitrinite and Wagner (2007) documented curved or sinuous microfissures and short tapered microcracks. The propagation direction of microfissures varies between oblique or perpendicular propagation respective to microlamination, (Wagner, 2007). A relation between size, penetration and directions of microcracks and microfissures and the respective coal rank was not precisely researched. 
Reflectance and bireflectance
In sub-bituminous coals weathering caused an increase in vitrinite reflectance by 0.05% to 0.10% (Marchioni, 1983). Similarly Pawlewicz and Barker (1989) also reported a rise in reflectance values for low rank coals by 0.2 to 0.3% attributed to weathering of exposed coals and differential erosion.  
In general, a decrease in vitrinite reflectance in high to low volatile bituminous weathered coals was observed (Teichmüller and Teichmüller, 1950; van Krevelen, 1961; Alpern and Maume, 1969; Kojima and Ogoshi, 1973; Crelling et al., 1979; Pearson and Kwong, 1979; Bustin, 1980, 1982). This is in accordance with Marchioni (1983) who reports a marked decrease in mean maximum vitrinite reflectance by 0.15 % at 10 m depth in coals collected at outcrop. Also, Correa Da Silva and Pereira Neto (1993) observed a decrease of vitrinite reflectance in artificially weathered coals stocked in piles open to the atmosphere for 10 months. Mathews and Bustin (1984) reported slightly lower vitrinite reflectance in the near surface samples. Chandra (1962) also reported minor changes to vitrinite reflectance in coals affected by coal weathering. These results supported the observation of Seyler (1938), Ammosov and Musyal (1952) and Josten (1956). In contrast, Pisupati and Scaroni (1993) observed no significant changes in vitrinite reflectance of weathered high to medium volatile bituminous coals.  Similarly Kruszewska and du Cann (1996) also did not report any changes in the mean maximum reflectance of weathered high volatile bituminous coals. 
In weathered high to medium volatile bituminous coals at outcrop or at stock or waste piles subjected to coal oxidative and self-heating conditions,  an increase in random vitrinite reflectance at elevated temperatures of about >150°C is reported by Misz et al. (2007), Misz-Kennan and Fabiańska (2010) and Kus et al. (2010). Also Mangena and du Cann (2007) reported slightly higher vitrinite reflectance of 0.82% compared to the average vitrinite reflectance for the unweathered Witbank coals of about 0.7% observed in coal sample subjected to heat alteration. Chandra and Srivastava (1978) reported a diversified vitrinite reflectance values for high to low volatile bituminous coals subjected to coal oxidation accompanied by temperature rise.
Benedict and Berry (1964) indicated a minor increase in bireflectance with increased oxidation. Also Marchioni (1983) reported a marked to slight increase of bireflectance of up to 0.21 % for weathered high volatile A to medium bituminous coals and no change in bireflectance for sub-bituminous A coals. 
Fluorescence
The utilization of fluorescence in blue or UV light and in particular monochromatic fluorescence intensity measurements on huminite and vitrinite is one of the most sensitive methods in detection and quantification of weathered coals. Davis et al. (2007) suggested that subtle oxidation associated with weathering is best recognized performing comparative studies on fresh and oxidized coals under blue light.
The decline in the fluorescence intensity caused by in situ coal weathering occurs in both the subbituminous and bituminous coals (Stach et al., 1982; Diessel, 1985; Bend et al., 1989; Quick et al., 1988; McHugh et al., 1991; Bend and Kosloski, 1993). However, in accordance to McHugh et al. (1991) and McHugh (1992), the loss of fluorescence as a result of weathering appears to be more prominent in low rank coals.
Another parameter applied in assessment of coal weathering is the empirically derived oxidation quotient of mean maximum fluorescence intensity at 550 nm and vitrinite/huminite reflectance. Quick et al. (1988) and Bend and Koslowski (1993) applied the quotient of fluorescence intensity and reflectance to weathered coals and concluded that with increasing degree of coal oxidation a decrease of the above quotient followed. 

V. Oxidation products in laboratory oxidised coals 
Oxidation rims, oxyrims, reaction rims
In laboratory experiments of coal oxidation, development of dark and pale oxidation rims in coals of different rank is largely observed in vitrinite macerals at low temperature oxidation. The development of dark in colour oxidation rims in huminite in laboratory oxidized lignite coal at low temperatures of 70°C for duration from 1 to 100 h is reported by Bend and Kosloski (1993). In contrast, generation of pale in colour oxidation rims has been generally observed in vitrinite and resinite macerals of laboratory oxidized bituminous coals at low temperature oxidation conditions. In laboratory oxidized bituminous coals, paler in colour oxidation rims are attributed to higher temperatures of up to 200°C and developed at grain boundaries and at fractures, fissures (Ferrari, 1938; Alpern and Maume, 1969; Goodarzi and Murchison, 1973, 1976; Gray and Krupinski, 1976; Gray et al., 1976; Nandi et al., 1977; Marchioni, 1983; Goodarzi, 1986; Bend and Kosloski, 1993). In contrary, Also Cronauer (1983a) did not observe oxidation rims in laboratory oxidized subbituminous coals at temperature of 150°C. 
In addition to presence of oxidation rims in artificially oxidized vitrinite and huminite, reaction rims were also observed to occur in oxidised resinite.  Murchison (1966) studied oxidized resinite concentrates derived from lignite to bituminous coals at 120°C and 140°C for periods of 3, 24, and 48 h and observed development of darker oxidation rims. Also, Goodarzi (1986) performed oxidation studies on resinite concentrates oxidized in air for 1 h intervals at fixed temperatures between 50°C and 400°C. Oxidised resinite macerals developed darker oxidation rims at 50°C and 100°C showing cellular morphology. Oxidized resinite at 200°C developed brighter oxidation rims and at 250°C both brighter outer and darker inner oxidation rims were documented. The higher reflectance of the outer rim indicates the formation of stable oxygen complex, “oxycoal” (Oreshko, 1949, 1950; van Krevelen, 1961) and the inner darker rim represents the reaction front characterized by the formation of chemisorbed components which subsequently decomposed to form stable oxygen complexes. 
Fractures
Goodarzi and Murchison (1976) attribute substantial mechanical cracking present in carbonized preoxidised coals to coal oxidation. Correa Da Silva and Pereira Neto (1993) observed formation of fissures at grain boundaries and in the centre of vitrinite and inertinite macerals in artificially weathered coals stocked in piles open to the atmosphere for 10 months.
Vitrinite reflectance  
Coals of different rank oxidized artificially in laboratory exhibit in general a marked increase in vitrinite reflectance resulting from low temperature oxidation carried out at different temperature and duration.
Valceva et al. (1976) examined oxidized lignite for 45 h at 150°C and reported a slight increase in reflectance by 0.048% Ro. Similarly, Bend and Koslowski (1993) reported an increase in huminite reflectance in lignite when oxidized at 70, 140, and 210°C for 24h. 
In subbituminous coals, Markova and Valceva (1983) showed that low temperature oxidation of at temperatures of 150 and 200°C lead to increase of reflectance in the centre and at the peripheries of vitrinite macerals. The reflectance in the centre increased by 0.03% Ro and 0.01% Ro after oxidation at 150 and 200°C, respectively. The reflectance in the peripheries increased by 0.23% Ro and 0.41% Ro after oxidation at 150 and 200°C, respectively. Also Gentzis et al. (1992) report an increase in vitrinite reflectance in oxidized coals of sub-bituminous, rank coals at 100 and 200°C for 8h and 30 min. respectively.
Similarly, artificially thermally altered high volatile bituminous coals display increase in vitrinite reflectance when heated at 70°C for 1, 10, and 100 hours (Bend and Koslowski, 1993). Similarly, Nandi et al. (1977) observed an increase in vitrinite reflectance in oxidized high volatile bituminous coals for 72 h. At relatively higher temperatures approaching 100°C, Goodarzi and Murchison (1973) observed a general increase in the vitrinite reflectance in high-volatile rank coals oxidized different periods of time up to 128 days. Also Gentzis et al. (1992) report an increase in vitrinite reflectance in oxidized coals of high-volatile rank coals at 100 and 200°C for 8h and 30 min., respectively. In artificially oxidised high volatile bituminous coals in air at 300°C for 24h Prado (1977) reported a slight decrease of vitrinite reflectance occurring in the centre of vitrinite grains and a distinct increase of vitrinite reflectance at oxidation rims oxidized. Calemma et al. (1995) report similarly a rise in reflectance values as result of coal oxidation of high volatile bituminous coals at 200°C at up to 4h. In contrast, Kruszewska and du Cann (1996) observed no changes in vitrinite reflectance of high volatile bituminous coals subjected to artificial oxidation at ambient conditions and duration up to a period of 134 weeks. 
Artificially oxidized low volatile bituminous coals up to 150°C and a maximum duration of 278 days displayed unchanged vitrinite reflectance values within the limits of measurement uncertainties (Copard et al., 2004). In contrast, artificially thermally altered low volatile bituminous coals display increase in vitrinite reflectance when heated at 70°C for 1, 10 and 100 hours (Bend and Koslowski, 1993), whereas Kojima and Ogoshi (1973) observed first a decrease of vitrinite reflectance followed by a rise in laboratory oxidized high, medium and low-volatile rank coals at 70°C for up to 3 months. 
Chandra (1958, 1962, 1966) concluded that mean maximum reflectance of oxidized high and medium volatile bituminous coals did not reveal significant change at all or changes very little as a result of oxidation at ambient laboratory temperatures. He concluded that the observed variations were insignificant considering the accuracy of the measurement. Also Gentzis et al. (1992) report an increase in vitrinite reflectance in oxidized coals of medium-volatile rank coals at 100 and 200°C for 8h and 30 min., respectively.

Resinite reflectance and bireflectance
Murchison (1966) observed formation of lower reflectance of oxidation rims in oxidized resinites.  Goodarzi (1986) performed oxidation studies on resinite concentrates oxidized in air for 1 h intervals at fixed temperatures between 50°C and 400°C. The reflectance of the central portion of resinite remained almost constant up to 250°C. The reflectance of the oxidation rims decreased initially to a minimum at 75°C and then increased continuously.
Fluorescence
Goodarzi (1986) performed oxidation studies on resinite concentrates and concluded that fluorescence of oxidized rims shifted from green towards the red spectral fluorescence region. Kruszewska and du Cann (1996) applied long-wave fluorescence and vitrinite elasticity methods to simulated weathered high and medium volatile bituminous coals. The results indicate a significant decline of fluorescence intensity and an increase in elasticity index with increasing oxidation time.
Anisotropy of coke
The cell walls of coke derived from oxidised coals develop a reduced anisotropy effects and smaller anisotropic units than produced from fresh coals (Goodarzi and Murchison, 1976; Yokono et al., 1981a,b; Grint et al., 1983; Qian and Marsh, 1984; Mochida et al., 1986; Casal et al., 2003). Oxidised coals favour the generation of isotropic and nonvesiculated precursor material with a microporous character and greater surface area (Ruiz et al. 2001, 2006). This is clearly related to an increased isotropy/anisotropy ratios of the chars obtained and is caused by prevention of any rearrangement of the turbostratic coal structure leading to densification of the carbonaceous material. Thomas et al. (1992), Menendez et al (1989),  Patrick et al. (1989),  Alvarez et a. (2003),  Casal et al. (2003), Cimadevilla et al. (2003, 2005), and documented a decrease of the optical anisotropy index in cokes derived from oxidised coals. 
VI. Chemical Properties of weathered and laboratory oxidized coals
The process of coal oxidation in weathered and artificially oxidised coals is related to prominent chemical structural changes and compositional modifications. After Radspinner and Howard (1943), Jones and Townend (1945, 1949), Brooks and Maher (1957), Chalishazar and Spooner (1957), Chakravaty (1960a,b), Ignasiak (1970), Swann and Evans (1979), Painter et al. (1980), Painter et al. (1981), Fredericks et al. (1983), Liotta et al. (1983), Rhoads et al. (1983), Lo and Cardott (1995), Gethner (1985, 1987a,b), Anderson and Johns (1986), (Monthioux 1988), Huggins and Huffman (1989), Nelson (1989), Lopez et al. (1998), Worasuwannarak (2002), MacPhee et al. (2004) and Mao et al. (2010), coal oxidation results in general in chemisorption of oxygen at coal surface and formation of acid functional groups such as hydroxyl, carbonyl, carboxyl and others and their subsequent thermal decomposition as well as a decrease in the aliphatic and alicyclic carbon and hydrogen content in coal. 
In course of oxidation, aliphatic groups are further oxidised to aldehydes, followed by aldehydes being oxidised to carboxylic groups and esters. Anhydrides are also formed from the carboxylic groups and the aldehydes. According to Pandolfo et al. (1995), Chandra (1958, 1962, 1966),  Fredericks et al. (1983), Estevez et al. (1990), Pietrzak and Wachowska (2003), Fujijoka et al. (2006), the contribution of methylene groups decreases while that of oxygen groups increases. 
In terms of elemental composition, natural and laboratory coal oxidation reveals a number of characteristic effects. Francis (1961) showed that laboratory oxidation for four weeks at 150°C indicate a decrease in carbon and hydrogen content for sub-bituminous to medium volatile bituminous coals. Similar effect is also observed in weathered coals (Painter et al., 1980; Marchioni, 1983; Cagigas et al., 1987; Calemma et al., 1988; Landais and Rochdi, 1993; Martinez and Escobar, 1995). In addition to a decrease in carbon and hydrogen weathered coals exhibit a general decrease in H/C atomic ratio and an increase in oxygen % and O/C ratio (van Krevelen, 1961; Chandra, 1958, 1962; Benedict and Berry, 1964; Alpern and Maume, 1969; Kojima and Ogoshi, 1973; Gray et al., 1976; Bustin, 1980; Marchioni, 1983; Mathews and Bustin, 1984; Clemens et al., 1989; Nelson, 1989; Pisupati et al., 1993; Taylor et al., 1998). With respect to sulphur, Yohe (1958) and Dryden (1963) observed a decrease in total sulphur in weathered coals whereas sulphur contents in weathered high volatile C bituminous coals stored for 88 weeks in summer and winter time remained unaffected by weathering (Rees et al., 1961). 
With respect to Rock Eval parameters, in situ natural and laboratory coal oxidation results in alteration of HI, OI and Tmax values.
Van Krevelen (1981), Fredericks et al. (1983), Nelson (1989), Copard et al. (2002, 2004) used Rock Eval parameters (Tmax, OI, HI) as indicators of low-temperature coal oxidation. The relative decrease in HI and increase in OI values may indicate oxidative alteration in artificially oxidised humic (Landais et al., 1984; Hao and Chen, 1992; Landais and Rochdi, 1993; Lo and Cardott, 1995; Copard et al., 2002, 2004). Copard et al. (2002) concluded an increase in Tmax value for weathered medium volatile bituminous coal accompanied by a concurrent decrease in HI. In contrary Lo and Cardott (1995) showed, that weathering of low maturity coal (0.72% Vr) exhibited no significant variation in Tmax parameter. 
VII. Fuel chemistry properties
Moisture 
Savage (1951), Mathews and Bustin (1984), Klika and Kraussova (1993), Dunlop and Johns (1999) and Crelling (2008) suggested relatively higher moisture content determined in oxidised coals compared to unoxidized coals. Meuzelaar et al. (1984) revealed that artificially oxidised coals display gradual changes of the air-dried moisture content which enabled a relatively straight forward detection of coal oxidation. 
Ash
With respect to ash content, weathering and artificial oxidation display different influence on the coal technological parameter. 
While Savage (1951) reported a slight reduction in the ash content due to a loss of iron and leaching out of alkaline earths as sulphate as a result of oxidation, Rees et al. (1961), Correa Da Silva and Pereira Neto (1993), Pisupati and Scaroni (1993) and Mastalerz at el. (2009) did not report any major changes in the ash content of weathered and laboratory oxidized coals. However Teo et al. (1982) and Mathews and Bustin (1984) revealed rise in coal ash contents of weathered coals. 
Volatile Matter
The content of volatile matter of weathered artificially oxidised and varies widely. Fuel chemistry analysis of artificially oxidized coal results in an anomalous volatile matter content (Jones and Towned, 1945, 1949; Nelson, 1989). 
Weathering causes an increase in volatile matter content (Alpern und Maume, 1969; Gray et al., 1976; Painter et al., 1980; Marchioni, 1983; Cagigas et al., 1987; Calemma et al., 1988; Landais and Rochdi, 1993; Martinez and Escobar, 1995; Pisupati and Scaroni, 1993; Pisupati et al., 1991; Pisupati et al., 1993; Fredericks et al., 1983; Kona et al., 1968; Freyer and Szladow, 1973; Mathews and Bustin, 1984; Crelling, 2008). 
A decrease in the volatile matter content is reported in artificially oxidised coals due to thermal oxidative alteration (Savage, 1951; Benedict and Berry, 1964; Kojima and Ogoshi, 1973; Kalemma and Gavalas, 1987; Khan et al., 1988; Gerus-Piasecka and Jasieńko, 1989; Klika and Kraussova, 1993; Wang et al., 2007; and Mastalerz at el., 2009).
On the contrary, Correa Da Silva and Pereira Neto (1993) observed no variations of volatile contents in artificially weathered coals stocked in piles open to the atmosphere for 10 months. Similarly, Rees et al (1961) observed no significant changes in volatile matter content of weathered high volatile C bituminous coals stored for 88 weeks in the winter and summer time. 
Calorific value
Fuel chemistry analysis of oxidized coal revealed a marked fall of gross calorific value pointing also to a greater aromaticity within oxidised coals (Jones and Towned, 1945, 1949; Benedict and Berry, 1964; Kona et al., 1968; Freyer and Szladow, 1973; Teo et al., 1982; Fredericks et al., 1983; Liotta et al., 1983; Marchioni, 1983; Isaacs and Liotta, 1987; Nelson, 1989; Yun and Meuzelaar, 1991; Pisupati et al., 1993; Iglesias et al., 1998). Weathering causes a decrease in carbon and calorific values (Painter et al., 1980; Marchioni, 1983; Cagigas et al., 1987; Calemma et al., 1988; Landais and Rochdi, 1993; Martinez and Escobar, 1995; Pisupati et al., 1993; Mastalerz et al., 2009). La Grange (1950) showed loss of 5% of the original calorific value after 25 years of storage. Rees et al. (1961) examined the effect of storage of high volatile C bituminous coals for 88 weeks resulting in decrease of calorific value by 2.1% in 52 weeks for the summer storage and 1.4% for the winter storage. Isaacks and Liotta (1987) showed that long term storage of subbituminous coals for up to 156 days results firstly in its marked decrease and subsequently in distinct increase caused by chemical decarboxylation during laboratory oxidation process. According to Nelson (1989) low rank coals will lose approximately 0.44 MJ/kg for each 1% increase in oxygen content and that higher rank coals will experience a decrease of about 0.56 MJ/kg. Correa Da Silva and Pereira Neto (1993) observed decrease of calorific value from 29.018 to 27.402 J/g by 5.6 % in artificially weathered coals stocked in piles open to the atmosphere for 10 months.


VII. Physical properties
Roy (1965) observed a weight loss in oxidised coals up to 168 hours of oxidation. The greatest weight loss is recorded in vitrinite macerals as opposed to fusinites. Also Sánchez and Rincón (1997) and Zelkowski (2004) reported a decreased weight of oxidized coals. With respect to adsorption capacity of artificially oxidised coals, Mastalerz et al. (2009) showed that methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% in high volatile bituminous coals during a 13-month time period of laboratory exposure to oxidizing air at air temperature. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The study demonstrates also that wet oxidation of high volatile bituminous coals stored in distilled water and bubbling air for 6 weeks caused significantly larger decreases of BET surface area and mesopore surface area than anoxic drying of freeze-dried coal samples placed in chamber with nitrogen gas for 4 days. 

VIII. Practical importance
Pyrolysis, coking 
Yohe (1958) provided detailed information of the first publication on the subject of the coal oxidation and its effects on coking. The process of oxidation in terms of weathered coals or coals oxidised in laboratory experiments is especially disadvantageous in case of coal technological coking properties such as volume contraction, expansion, devolatilisation, plastic range leading to:
· loss of coking ability at exposure to air at 60-80°C (Boyapati et al., 1984; Smith et al., 2001),
· reduction of coke strength and coke yield (Crelling et al., 1979; Boyapati et al., 1984),
· decrease of coke stability (Gray et al., 1976; Crelling et al., 1979),
· loss of plastic properties (Dryden, 1963; Wender et al., 1981; Seki et al., 1990),
· increase in coke reactivity (Korte, 2001),
· decrease in coke fluidity (Goodarzi and Murchison, 1973; Goodarzi and Murchison, 1976; Goodarzi et al., 1975; Neavel, 1982; Keogh et al., 1989); Davidson, 1990). 
· decrease of dilatation as a function of storage time in oxidised coals (Boyapati et al., 1984),
· reduction of the decaking (heating large particles of caking coal through their plastic range in a free fall system to produce non-caking coal char), (Fuchs and Sandhoff, 1942; Orchin et al., 1951; Kam et al., 1976; Ota and Takarada, 2001), 
· loss of caking properties (Seki et al., 1990; Sánchez and Rincón, 1997),
· decrease or loss of Gieseler fluidity (Jackman et al., 1957; Wen and Sun, 1976; Lowenhaupt and Gray, 1980; Senftle and Davis, 1984; Huffman et al., 1985; Huggins et al., 1985; Wu and Winschel, 1986; Cagigas et al., 1987; Huggins et al., 1987; Wu et al., 1987; Huggins and Huffman, 1989; Clemens and Matheson, 1992),
· decrease in swelling number (La Grange, 1950; Savage, 1951; Wen and Sun, 1976, Gray et al., 1976; Pearson and Kwong, 1979), 
· [bookmark: OLE_LINK5][bookmark: OLE_LINK6]decrease in free-swelling index (FSI) (Jackman et al., 1957; Pearson and Creaney, 1981; Mathews and Bustin, 1984; Huggins et al., 1985, 1987; Larsen et al., 1986; Wu and Winschel, 1986; Wu et al., 1987; Cagigas et al., 1987),
· loss of swelling and fluid properties of coals (Schmidt and Elder, 1940; Schmidt, 1945; Loison et al., 1963; Benedict and Berry, 1964; Kona et al., 1968; Freyer and Szladow, 1973; Kojima and Ogoshi, 1973; Guyot and Pollard, 1974; Ignasiak et al., 1974; Wachowska et al., 1974;Gray et al., 1976; Crelling et al., 1979; Mahajan et al., 1980; Anderson and Hamza, 1982; Malony, 1982; Malony et al., 1982; Lin et al., 1983; Liotta et al., 1983; Marchioni, 1983; Senftle and Davis, 1984; Huffmann et al., 1985; Pis et al., 1988; Wu et al., 1988; Clemens et al., 1989; Davidson, 1990; Valia, 1990; Worasuwannarak, 2002; Casal et al., 2003; Crelling, 2008; Suarez-Ruiz and Ward, 2008),
· decrease in conventional coking indices (Wu and Winschel, 1986; Wu et al., 1987; and Cagigas et al., 1987; McHugh et al., 1991; Kruszewska, du Cann, 1996), 
Weathered coals also cause increase of oil uptake in coke ovens related to the increased fracturing in the coal disallowing for control of bulk density (Crelling et al., 1979).
Furimsky et al. (1983) found that a mild oxidation of high volatile bituminous coals of up to 105°C for 64 to 192h resulted in a decrease of liquid hydrocarbon yield and an increase in the proportions of aromatic carbon and oxygen content in liquid products during coal pyrolysis. Pisupati and Scaroni (1993) also suggest that coal oxidation causes a reduction in the yields of pyrolysis products. 
Combustion
Numerous studies suggest that weathered coals are less reactive than fresh coals (Marchioni, 1983; Bend, 1989; Pisupati and Scaroni, 1993; Cloke and Lester, 1994; Lo and Cardott, 1995). On the contrary, Iglesias et al. (1998) reported that weathered coals could enhance the coal reactivity due to formation of molecular structures with associated oxygenated groups. Oxidised vitrinite can have a range of combustion behaviour, from good to poor in accordance to Kosina and Hrncir (1983).
Liquefaction
Weathering and low temperature oxidation may also drastically reduce the yield and quality of liquefied coal products or solvent extraction as free radicals resulting from thermal cleavage of ether or methylene bonds are stabilised by hydrogen transfer from the solvent (Liotta et al., 1983; Larsen et al., 1986; Lopez et al., 1998; Neavel, 1976; Whitehurst et al., 1980; Gransden et al., 1991; Khan et al., 1988; Cronauer and Ruberto, 1979; Cronauer et al., 1984).  
Cox (1984), Cox and Nelson (1984) and Pisupati and Scaroni (1993) report that coal weathering decreases the liquefaction yield.
In turn, Senftle and Davis (1984) reported no changes to liquefaction yields upon coal oxidation. 
Gasification
Mahajan et al. (1980) and Nelson (1989) reported that pre-oxidised coal may result in improved gasification reactivity and may improve the surface area of the char produced. Cox (1984) and Cox and Nelson (1984) reported that coal weathering may introduce changes in product composition and thus influence yields in gasification. 
Self-heating
It is widely accepted, that exothermic reaction during low-temperature oxidation (< 100°C) is the primary source of the heat released in spontaneous combustion and self-heating processes (Huggins and Huffman, 1989; Schmal, 1989; van Krevelen, 1993; Lopez et al., 1998). Low-temperature oxidation is one of several processes involved in the self-heating and spontaneous combustion of coals, beginning with the evolution of oxides of carbon (up to 120°C), followed by rapid interaction with oxygen (up to 180°C), and ending with thermal decomposition (180-250°C) (Walker, 1999).
Flotation recovery
Presence of newly formed functional groups such as humic acid complexes reduces the hydrophilicity among coal and mineral particles leading to increased difficulties in separation of mineral matter (Garcia et al., 1991; Gray et al., 1976) and decrease of the flotation recovery (Anderson and Hamza, 1982; Fuerstenau et al., 1983; Murata, 1981; Miller et al., 1983). This, in turn, results in reduction of efficiency in froth flotation and oil agglomeration (Zimmerman, 1968; Taylor et al., 1981). Further, weathering reduces particle size, causing dusting problems and altering coal surface properties and thus reducing flotation recovery (Gray et al., 1976; Crelling et al., 1979; Wu et al., 1988). 
Storage
Hoover and Schweighardt (1989) give an overview on analytical techniques for monitoring coal sample storage. According to Mavor and Pratt (1993) oxidation can reduce sorption capacities of coals by as much as 11%. Mastalerz et al (2009) reported that air oxidation during laboratory storage result in increased adsorption capacities for methane and CO2, decrease of calorific values and moisture content. 
IX. Methods applied in identification of coal oxidation
Instrumental techniques and methods applied to assess coal oxidation as well as its degree are reviewed extensively by Sen et al. (2009). Huffmann et al (1985) and Davidson (1991) give a general comparison of sensitivity of various analytical techniques applied to detect coal oxidation. Their comprehensive explanation is outside the scope of this report. 
Optical microscopy methods: 
Incident white light microscopy
For qualitative verification purposes petrographic analysis in incident light can be applied to identify effects of weathering and artificial oxidation in coals of various ranks upon coal maceral surface, its relief, colour and structure. Wagner (1998) developed Weathering Index Analysis (WIA) to quantify and qualify the degree of weathering in coals from discard stockpiles and dumps. The index is based on eight weathering features used as microscopic indicators of weathering. The analysis enables a qualitative and quantitative assessment of coal weathering features (Wagner, 2007). 

Incident fluorescence light microscopy
Kruszewska et al. (1992), Kruszewska and du Cann 1996) found that oxidation of coal could be detected at the very early stages by the application of the so called long-wave fluorescence relative intensity measurements of vitrinite (FRI) and vitrinite elasticity index (EI). Coal oxidation results to a marked decrease in FRI and a substantial increase in EI. McHugh et al (1991) used fluorescence intensity to assess oxidation in low rank coals. 
Transmitted light microscopy
Brenner (1981) studied effects of superficial coal oxidation at 365°C in thin sections and on coal pellets suggesting that many oxidation areas are not readily evident under reflected light. Thermally altered vitrinite particles studied under transmitted light display a usually uniform thin oxidation border of 4 μm around its periphery characterized by darker colour. The darkened oxidation regions are not a consequence of localized heating of the coal or pyrolysis but oxidation process. A similar darkening effect due to oxidation were observed in coal which was oxidizes at temperatures as low as 150°C. In heating experiments in the absence of oxygen to more than 20°C higher than the temperatures used in this experiment, no blackening effects such as those caused here by oxidation are observed. The internal region of the majority of vitrinite particles shows a number of cracks and holes with dominantly broad (thick) dark areas bordering these regions. The interior regions and at the border display large cracks and micro-fractures are present. The formation of vacuoles is observed only in a small fraction of coal samples studied at 365°C. 
Staining Tester
Gray et al. (1976), Atkinson and Hyslop (1961), Lowenhaupt and Gray (1980), Marchioni (1983),  Axelson et al. (1987), Osborne (1988) applied alkali etching of coal followed by cationing staining with red stain (safranin 0 in alcohols) as an extremely sensitive method of the detection of coal oxidation. The intensity and depth of staining may vary with the intensity of coal oxidation and is not applicable to sub-bituminous coals as they remain alkali-soluble. Further, Lowenhaupt and Gray (1980) suggested that the cutoff at 80 % should be used as a staining index for oxidized or weathered caking and coking coals. Osborne (1988) applied a safranin-O dye method to oxidized coal fragments in order to quantitatively asses the degree of coal oxidation. 
Optical anisotropy index (AI)
The AI is an optical texture index based upon the Method of Moreland et al. (1988) by which a point counter analysis is applied to estimate the degree of anisotropy component developed on coke surface. The AI is thought to be reduced in oxidized coals. 
Non-optical methods:
FTIR spectroscopy
FTIR-spectroscopy is commonly considered the most widely used technique applied in the study of coal oxidation/weathering since it provides information on structural changes of oxygenated functional groups (phenolic, carboxylic, hydroxyl, carbonyl, oxygenated groups), (Sen et al., 2009; Landai and Rochdi, 1993; Mastalerz and Bustin, 1993). 
Calemma et al. (1988) performed research study on low temperature coal oxidation using FTIR method resulting in an increase in oxygenated functional groups (carboxyls, esters and anhydrides). Painter and Rhoads (1981) reported on FTIR study of laboratory oxidized caking coals in air at 150°C for 2 h. A comparison of the infrared spectrum of a sample of unoxidized coal to the spectrum of the same sample subsequent to heating showed structural changes resulting from an increase of carbonyl and carboxyl groups together with slight loss of phenolic OH. A similar effect was reported by Choudhury et al. (2009). FTIR spectra of 24 h, 50 h, and 216 h air oxidized coals were recorded and compared. It was found that there has been a gradual decrease in aliphatic- CH groups with increase in duration of aerial oxidation along with formation of COOH and > CO groups. Similarly, aliphatic bands are very prone to oxidation, (Kister et al., 1988).
Gieseler Plastometer
Huffmann et al. (1985) and Thompson (2000) described the utilisation of Gieseler Plastometer to study oxidised coals and concluded that Gieseler fluidity was by far the most sensitive to the early stages of oxidation. Davidson (1991) argues that the Gieseler test is generally recognized as the most sensitive to mild oxidation in these coals which, in the fresh state, exhibit Gieseler fluidity. 
Micro hardness tester
Given (1976) and Nandi et al. (1977) reported that changes in microhardnes detected by the Vickers Hardness Test can be used to detect oxidation in coals. Similarly, Markova and Valceva (1983) showed that low temperature oxidation of subbituminous coals at temperatures of 150 and 200°C led to an increase of microhardness. Also, Korte (2001) showed the elasticity of the vitrinite particles measured with a micro hardness tester increase with increasing oxidation of the vitrinite particles. Equally, Kruszewska and du Cann (1996) reported on the increase in elasticity index in vitrinite in weathered coals, with EI increasing with weathering time. The resulting parabolic curves (max. vitrinite reflectance vs. EI) were distinct for low rank coals becoming less marked with increasing coal rank. 
In contrast, Nandi et al. (1977) reported that artificially oxidised coals (drying at ambient laboratory conditions for 18 and 12 years and artificial oxidation at low temperature conditions at 105°C) exhibited no changes in microhardnes. Similarly, Alpern (1977) did not observe any change in the microhardness of coal sample of a French coal of the Stephanian age artificially oxidised (drying at ambient laboratory conditions) for 18 years.
Surface area, gas adsorption
The effects of air oxidation on gas adsorption of coals during storage are important for accessing their gas saturation capacity. Weathering and laboratory oxidation of high and medium-volatile bituminous coals influences the surface area and pore-size distribution influencing methane and carbon dioxide gas sorption in coals (Mastalerz et al., 2009; Busch et al., 2004; Ludvig et al., 1983; Clarkson and Bustin, 1997). Ludvig et al. (1983) reported in high temperature oxidation experiments up to 400°C that an intermittent increase in surface areas after the experiments was followed by a reduction in surface areas after storage for up to 278 days in air at room temperature. He interpreted the observed reduction in surface area as a result of exposure to oxygen water vapor and other atmospheric gases suggesting that pore structure changes with storage time. Mastalerz et al. (2009) observed that oxidation and drying of coals increased their adsorption capacities. In contrary, Vessey and Bustin (1999) documented that coal oxidations resulted in decreased methane adsorption capacity.
Miscellaneous techniques:
Mössbauer spectroscopy
Mössbauer spectroscopy allows detection of transformation of pyrite to FeOOH correlating with parameters of oxidation (Huggins et al., 1980; Kolker and Huggins, 2007).
Atomic force microscopy
Bruening and Cohen (2005) applied atomic force microscopy (AFM) to assess the effects of weathering on coal macerals in terms of maceral topography or roughness. Surface roughness measurements can aid in assessment of surface changes in specific macerals before and after the oxidation by application of the cross-section analysis.  

Low temperature ash
Pearson and Kwong (1979) have reported a method of direct correlation between the oxidation of a high-volatile coking coal and the presence of the mineral bassanite (calcium sulphate hemihydrate) in low temperature ash. 
NMR spectroscopy
13C NMR spectroscopy was used by Havens et al. (1983) together with FTIR spectroscopy to show that coal oxidation took place predominantly at aliphatic carbons bonds. MacPhee and Nandi (1981) and Yokono et al. (1981b) derived oxidation sensitive parameters such as various relaxation times from 1H NMR and the aromatic/aliphatic ration for 13C NMR that changed with the length of time of oxidation at about 373 K. Mao et al (2010) demonstrated that solid-state NMR technique can be applied to chemically characterise coal oxidized at low temperatures by detecting obvious structural changes such as generation of COO groups. 
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